Plasma Physics

Graduate student Jason Hiner working with a plasma chamber

Plasma Physics is the study of ionized gases. Plasma is the most common state of known matter in the universe. Our experimenters have seven labs on campus, and instruments on spacecraft, rockets, and the International Space Station. Our research includes experiment, theory, and simulation. Areas include basic science, astronomy, geophysics, and processing plasmas. Graduate students participate in a weekly plasma physics seminar.

Image gallery


We have the largest number of plasma physics faculty members among all physics departments in the U.S. We are ranked among the top ten universities nationwide in plasma physics. Our faculty members have strong international reputations, frequently giving invited talks at international conferences and winning grants from a wide range of funding agencies. Our faculty includes six fellows of the APS and one member of the National Academy of Sciences. Our labs, and our instruments in space, are unique and world class. We offer a wide choice of research problems, which are diversified among the most rapidly growing topics in plasma physics. Students publish highly-cited papers in leading journals, and give talks at major conferences. Plasma physics offers strong job placement opportunities, and our PhD graduates have excellent success in finding the jobs that they most want.


Scott D. Baalrud

Basic and applied theoretical plasma physics.

  • Strongly-coupled plasmas, such as the warm dense matter in inertial confinement fusion
  • Theory for low-temperature plasmas including plasma-boundary interaction
  • Students carry out a combination of analytic and numerical theory
  • Students interact with collaborators at major national labs
John A. Goree

Experimental plasma physics; biomedical applications of plasmas; soft condensed matter physics.

  • Dusty plasma, strongly-coupled plasma, optical diagnostics of plasmas, waves, biomedical applications of plasma
  • Physics problems are interdisciplinary: condensed matter and plasma physics; experiments involve direct comparisons to theory
  • Experiments are performed in our labs. Data from experiments on the International Space Station (ISS) are also analyzed.
  • Two labs with plasma chambers and optical diagnostics
  • Students also interact with group members including a research scientist and postdoc; other faculty and research scientists; collaborators in other countries
  • Students develop skills including design, construction, and operation of: vacuum, electronic, optical, and laser systems; programming in various languages; image analysis
Donald A. Gurnett

Experimental space plasma physics.

  • Experimental studies of planetary radio emissions and plasma waves
  • Student analysis of spacecraft data: Voyagers 1 and 2 (now approaching interstellar space); Cassini (in orbit around Saturn); Cluster (consisting of four spacecraft in Earth orbit); Mars Express in orbit around Mars; and Juno (in route to Jupiter)
  • Supervised over 50 space physics thesis projects; former students now at NASA centers, industry, other universities
  • Students also interact with other group members, including research scientists, engineers, and programmers
Jasper S. Halekas

Experimental space physics.

  • Space plasma physics around moons and planets and in the interplanetary medium
  • Development of spaceflight instrumentation to make high-resolution measurements of charged particles
  • On-campus facilities include a laboratory for spaceflight hardware assembly and calibration
  • Students participate in the development of spaceflight instruments, in collaboration with engineers, scientists, and technicians at Iowa and partner institutions
  • Students  also analyze spacecraft data from the Earth, the Moon, Mars, the Sun and solar wind, and outer planets
  • Students gain skills in spaceflight hardware development, programming, and data analysis
 Gregory G. Howes

Theoretical and computational plasma physics.

  • Turbulence in the magnetized plasmas found in laboratories, space and astrophysics
  • Analysis of spacecraft data from the turbulent solar wind
  • Students develop skills including high-performance computing on the nation's fastest supercomputers, analysis of simulation and observational data, and development of simple analytical models to interpret results
  • Students also interact with group members including a postdoc and collaborators around the world
Craig A. Kletzing

Experimental space plasma physics; laboratory plasma physics.

  • Plasma processes that occur in the aurora
  • Laboratory experiments to test theory for Alfvén waves and collision operators
  • Experiments are prepared at Iowa and then performed at UCLA's Large Plasma Device (LAPD) user's facility
  • On-campus facilities include: two vacuum chambers and an electronics lab
  • Students perform both laboratory and rocket experiments
  • Students also interact with other group members including two postdocs, a research scientist, as well as scientists at UCLA
Robert L. Merlino

Experimental plasma physics.

  • Basic plasma physics problems, including laboratory simulations of space plasma phenomena, dusty plasmas
  • Facilities include two lab rooms with three plasma chambers
  • Major equipment includes two Q-machines with magnetic field up to 0.5 T; each machine is dedicated to a single graduate student
  • Students develop skills including: vacuum, electronics, data acquisition, image analysis, instrument fabrication
  • Employment opportunities include industry, government labs and universities
Jack D. Scudder

Space plasma physics.

  • Analysis of data from NASA's Polar spacecraft, in Earth orbit
  • Search for geophysically important plasma processes in near-Earth plasmas
  • Computer-intensive research
  • Students develop skills in: writing codes in C, Fortran and IDL, and numerical methods
  • Employment opportunities are postdoc positions at universities and national labs
  • Students will also interact with group members including software engineers as well as other faculty
Frederick N. Skiff

Laser spectroscopy; plasma physics.

  • Experimental topics include experiments for plasma waves and instabilities, laser-induced fluorescence diagnostics of plasmas; student projects are usually mostly experimental and some theory
  • Theoretical topics include plasma kinetic theory including waves and nonlinear fluctuations
  • Two labs, including: a 3-meter linear magnetized-plasma device for waves and spectroscopy, single-frequency scanning lasers for high-resolution laser spectroscopy
  • Students also interact with group members, and they participate in the plasma seminar and interact with other theoretical and experimental plasma faculty
  • Students develop skills including designing and building apparatus, electronics, computation
  • Previous assistants found employment in academia as postdocs, and a professor, and the semiconductor and optics industries
Steven R. Spangler

Radio astronomy; plasma astrophysics; space plasma physics.

  • Interplanetary medium, interstellar medium, radio galaxies, quasars
  • Students use the Very Large Array (VLA) and Very Long Baseline Array (VLBA) radio telescopes
  • Students also encouraged to carry out instrumentation-development projects with the 4.5 meter instructional radio telescope on roof of Van Allen Hall
  • Students develop skills in numerical methods, writing code in Python and other languages