Over the past decade and a half, four new ground-based gamma-ray observatories (VERITAS, HESS, MAGIC, and HAWC) have fundamentally altered our view of the gamma-ray sky above 100 GeV, even as the Fermi Gamma-ray Space Telescope dramatically changed our picture of the gamma-ray universe between 30 MeV and 300 GeV. Together these instruments have revealed new classes of gamma-ray sources and shed light on long-standing mysteries. They have also forced us to revise or abandon long-held assumptions about the role played by supernova remnants and other relics of stellar death in cosmic ray acceleration, as well as the way cosmic rays diffuse and escape into the interstellar medium. Recent developments in neutrino and gravitational wave astronomy have further changed the landscape of multi-messenger high-energy astrophysics.

I will discuss recent highlights from the VERITAS observatory, particularly its Galactic and multi-messenger science programs. I will also discuss ongoing efforts to take better advantage of the synergy between gamma-ray observatories and touch briefly what lies beyond the current generation of gamma-ray observatories.