Operator Theory Seminar

October 10, 2017 - 1:30pm
309 VAN

“Free Transport for Interpolated Free Group Factors” by Brent Nelson, Ph.D., Department of Mathematics, University of California at Berkeley

Abstract:  A few years ago in a landmark paper, Guionnet and Shlyakhtenko proved the existence of free monotone transport from the joint law of a free semicircular family. In particular, these results imply that the von Neumann algebra (resp. C*-algebra) generated by a free semicircular family is isomorphic to the von Neumann algebra (resp. C*-algebra) generated by self-adjoint operators with a joint law "close" to the semicircle law in a certain sense. Notably, the von Neumann algebra generated by a free semicircular family is a free group factor. In this talk, I will discuss how to obtain corresponding results for the interpolated free group factors using an operator-valued framework. This is joint work with Michael Hartglass.